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Multiplicative stochastic resonance
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A multiplicative bistable stochastic system perturbed by a periodic forcing term is shown to exhibit
stochastic resonance with increasing intensity of the multiplicative noise. Such an effect is related to the
phenomenon of stochastic stabilization, which takes place in the unperturbed system.

PACS number(s): 05.40.+j, 02.50.—r

The amplitude of the periodic component of the output
signal from a periodically modulated bistable system in
the presence of additive external noise, increases with the
noise intensity up to a maximum value when the rate of
the noise-induced switch process approaches the forcing
frequency. Such a phenomenon, termed stochastic reso-
nance (SR) [1], was investigated by a number of authors
[1-8] and was applied in many areas of natural sciences
[9].

There exist, however, many cases of physical interest
[10] where the role of fluctuating control parameter is
played by a multiplicative noise [10—13]. In the present
paper, we show that SR may be obtained by tuning the
multiplicative noise intensity, as well. The enhancement
of the periodic component of the output signals is traced
back to the phenomenon of stochastic stabilization, which
would occur in the absence of periodic modulation
[10,11].

A stationary variation of the class of stochastic pro-
cesses addressed here is the noise-assisted escape over
fluctuating barriers [14-16]. Recently, Doering and Ga-
doua [15] discovered that under quite general conditions
such an escape mechanism exhibits a peculiar resonant
behavior: the relevant escape rate approaches a max-
imum with increasing correlation time of the barrier fluc-
tuations. A more general treatment of this phenomenon
is discussed in Ref. [16]. The complicated interplay of
additive and multiplicative (random) perturbations are at
the basis of the observed resonant behaviors of both the
stationary activation processes of Refs. [15,16] and the
nonstationary switch processes we report on.

We investigated the phenomenon of SR in the over-
damped bistable system described by the following sto-
chastic differential equation

%= —V'(x)+xEp (1) +E ,(1)+ A cosor (1)
with
V(x)=—g—x2+9-x4 (2)
2 4

by means of analog simulation [17]. The fluctuating pa-
rameters &;(¢), with i = A, M, are stationary zero-mean
valued, Gaussian random processes with autocorrelation
functions
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(&;(1)€;(0))=2Q,8,8(1) . 3)

The origin of time in Eq. (1) has been fixed arbitrarily.
Furthermore, the amplitude of the modulating term is
taken small enough for the bistable nature of the process
x(t) to be retained, i.e., | 4|xo <<AV with xo,=Va/b
and AV =a?/4b. Here, *x, denotes the stable minima
and AV the barrier height of the potential (2).

The main conclusions of our simulation work is that
the process x (¢) is periodically modulated by the external
bias A4 coswt according to the approximate law

(x(8)) =% cos(wt +,) . @)

The amplitude X, and the phase ¢, of {x(¢)) depend on
A, Q 4, and Q,, whereas no dc component has been ob-
served for 470, no matter what Q ,. Most notably, the
amplitude X; shows a typical SR behavior with increas-
ing @y, (multiplicative SR), while keeping Q , fixed. In
Fig. 1 we plot the dependence of X, on Q,, for the most
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FIG. 1. X, versus @), for Q=0 and different values of 4.
The potential parameters are x,=2.2 Vand a =10*s ™.
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remarkable case of a purely multiplicative bistable pro-
cess (Q ,=0).

In order to interpret the outcome of our analog simula-
tions at low forcing frequencies, o <<a, it would suffice to
determine the properties of the distribution function
P(x, A ;t), solution of the Fokker-Planck equation

9 ,_9
al " ax

V'(x)—Qpx — A coswt

P (5)

d
+ 5o (Q4+ Qyx?)

associated with Eq. (1).
In the presence of a static tilting, i.e., for © =0, the sta-
tionary solution of Eq. (5) reads
0 —1/2+[1+(k/2)(Q , /AV)]
x2+ =4
M
2
_ kx_z __A4

Py(x, A)=Ny(A)

Xexp , (6)

where kK =a /2Q,, and Ny( A4) is a suitable normalization
constant. Three cases are of particular interest.

(i) 4 =0 ,=0. The process x(¢) is confined on one-
half axis at any time, depending on the initial conditions,
so that [{x)|>0. A sort of noise-induced phase transi-
tion [10] occurs for Q) =a. For Q,, <a, the relevant dis-
tribution function peaks at xo(1—2k)'/2, whereas for
Oy >a it becomes singular at the origin. This effect,
termed stochastic stabilization, is characterized by the
appearance of long tails in Py(x,0) [18] for Q,, >>a.

(i) 4 =0, Q,>0. By adding an additive noise, no
mater how weak, x (¢) diffuses on the entire x axis. The
relevant distribution function is then symmetric for
x——x and {x ) =0. In the presence of a weak additive
noise, Q , <<x3Q,, the distribution function (6) comes
fairly close to Py(x,0) [18] with Ny(A4)=N,/2, apart
from a small symmetric neighborhood around the origin
(where it is always finite [10]).

(iii) @ =0, 470. Py(x, A) vanishes on the negative
half axis for 4 >0 and vice versa. Accordingly, since
Py(0, A)=0, for =4 >0 the static distribution function
Py(x, A) shows one peak located at tx,,, with x,,(Q,,) a
decreasing function of Q. In particular, x,,(Q,,)
~xo+|A|/2(a —Qy) for Qy <<a and x,,(Qy)~| 4|/
(Qy —a) for Qy >>a.

In the presence of a periodic tilting, i.e., for @ >0, the
process x (t) is no longer stationary and a time-dependent
distribution function P(x, 4 ;t) is required to describe its
steady state. However, in the limit of low forcing fre-
quency, assumed throughout our simulation work, the
adiabatic approximation P(x,A4;t)=~Py(x,A(t)) with
A (t)= A coswt suffices to shed light on the nonstationary
dynamics underlying the phenomenon of multiplicative
SR.

To interpret correctly our experimental results, we re-
call that, when simulating a purely multiplicative bistable
system by means of an analog device, two limitations are
unavoidable.

4879

(a) The presence of small additive noise due to ubiqui-
tous fluctuations in the circuitry. As a consequence, our
results for Q , =0 are to be taken with some caution. Un-
fortunately, a fully analytical treatment of Eq. (5) with
both Q 4, >0 and Q,, >0 lies beyond our capabilities even
for A =0. Numerical algorithms based on continued
fraction expansions are the only tool available to date to
crack down the problem [12,13]. The escape rate
1(Q 4,0, ) between the stable points of ¥ (x) was com-
puted in Ref. [12] for 4 =0 as a function of the multipli-
cative noise intensity. For a given value of Q ,, 1 grows
linearly with increasing Q,, from zero [where u(Q ,,0)
coincides with u,(Q,), the well-known Kramers rate
[20]] up to a critical value Q,,=a /4 (continuum spec-
trum threshold [10]) and, then, flattens out until the sto-
chastic stabilization condition Q, =a is reached. For
even larger values of Q,,,u diverges faster than exponen-
tially.

(b) Any commercial noise generator is characterized
by a finite correlation time (colored noise). The typical
autocorrelation function of a simulated noise £;(¢) is
well approximated by an exponential function,
(&;(1)£;(0)) =(Q, /7;)exp(—|t| /7;), which tends to Eq.
(3) for vanishingly small values of 7;, only. Effects due to
the finite correlation time of £;(z) are negligible when
1/7; is larger than any other dynamical frequency in the
problem under study. For instance, in the unperturbed,
purely multiplicative case of Eq. (1) with Q , = 4 =0, this
amounts to requiring that

(@a+Qp)ray<<1. (7

It follows immediately that colored noise effects are
bound to show up for large Q,,/a values, i.e., in the re-
gime of stochastic stabilization. Under such cir-
cumstances a side peak grows out of the long tail of
Py(x,0) [18] as pointed out in Ref. [13]. Thus, contrary
to the ideal white-noise case, the second moment of
Py(x,0) is a slowly increasing function of Q,, with
(xQy)) Zx3.

We are now in the position to explain qualitatively the
phenomenon of multiplicative SR observed in the period-
ically perturbed bistable system (1) with w <<a. Let us
consider first the purely multiplicative case Q , =0 (Fig.
1). It is clear from our discussion of Eq. (6), case (iii),
that for Q , =0 the forcing term alone is responsible for
x (t) to switch back and forth between the positive and
the negative half axis. Should the adiabatic approxima-
tion hold good for any value of Q,,, the process x(t)
would approach instantaneously its most probable value
in the vicinity to the peak of the distribution function
Py(x, A(1)). Therefore, the amplitude X, of the periodic
component of x (¢), (4), would be of the order x,,, that is
a monotonic decreasing function of Q,,. However, Fig. 1
shows a dramatic drop of X, as Q,, tends to zero. Such
remarkable deviation from the prediction of the adiabatic
approximation is due to the fact that with decreasing Q,,
the switch time of x(¢) between positive and negative
values, controlled by A (t) periodically reversing sign,
grows much longer than the forcing period. For in-
stance, on assuming that at ¢ =0 x is trapped on the un-
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FIG. 2. x, versus Q) for 4 =0.1ax, and different values of
Q4. The potential parameters are as in Fig. 1.

stable half axis x <x,~A4/a with 4 >0, the mean-
first-passage-time 7, required by x to escape through x ,
onto the stable half axis x >x , can be easily calculated
[19,20] at the leading order in (x,/x 4 )% i.e.,

I'(k)
2ak*

X0

X 4

T4(Qy)= (8)

The escape time 7, is a strongly divergent quantity for
X 4/xo—0. On increasing Q,, close to the condition of
stochastic stabilization, more precisely for k <1, such a
divergence is substantially weakened, so that the condi-
tion for the adiabatic approximation to apply,
o7 4(Q)) <<1 may be verified. In this regime the nonsta-
tionary process x (¢) is mainly controlled by the modulat-
ed interwell dynamics described by P,(x, 4(¢)) and, as
stated above, X, approaches x,,. In the opposite limit,
oT 4 >>1 (i.e., Qy <<a), the steady-state distribution of
x (t) spreads over the entire x axis with oscillating local
maxima [19] at tx,+ A (t)/2(a —Q,,) (modulated in-
trawell dynamics). It follows immediately that for
Oy =0+ the amplitude X, is of the order 4 /2a, that is
much smaller than the value of x,, at kK =1, whence the
appearance of the SR peaks of Fig. 1 for w7, ~1. Ac-
cordingly, the SR peaks shift to the left with increasing
A. Finally, it should be noticed that for large values of
0, the color effects described in (b) become dominant to
the extent that the expected decrease of X; for 7,,=0 is
no more observable (Fig. 1; see Ref. [19] for further de-
tails). In conclusion, the transition from an intrawell to
an interwell modulated dynamics is the basic mechanism
responsible for multiplicative SR.

The phenomenon of multiplicative SR becomes easily
detectable by switching on the additive noise £ 4(¢). In
Fig. 2 the dependence of X; on Q,, for several values of
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FIG. 3. x, versus Q, for 4 =0.1ax, and different values of
Qu- The potential parameters are as in Fig. 1.

Q4 is displayed in order to illustrate the interplay of ad-
ditive and multiplicative noise. The switch process be-
tween the positive and negative half axis in Eq. (1) is now
assisted by the additive noise, which makes the relevant
switch time 7, decrease with increasing Q , (and always
finite). As a consequence, the maxima of the curves
X,(Qp), centered at around the Q,, value that satisfies
the condition w7 4 = 1, shift to the left with respect to the
purely multiplicative case. Furthermore, in the presence
of additive noise x (¢) diffuses onto the unstable half axis
of Py(x, A(t)) even in the adiabatic approximation, i.e.,
for large Q,, values, provided that p,(Q )7, >>1. This
explains why the high-Q,, tails of the curves X(Q,,) get
depressed with increasing Q ,. The two competing trends
determine rather broad SR peaks as shown in Fig. 2. On
further increasing Q ,, the SR peaks are washed out com-
pletely [19].

Of course, Eq. (1) also exhibits additive SR as shown in
Fig. 3, where the amplitude X, of the periodic component
of x(z) is plotted versus Q , for different values of Q,,
[21]. It is well known [1-8] that in the purely additive
case X; peaks of noise intensities such that u,(Q,)~w.
Therefore, one expects that for small Q,, values the reso-
nance condition may be recast as u(Q ,,Q,/)~wo, with u
plotted in Ref. 12. On making use of the fact that u
grows almost linearly with Q,, in the range (0,a), it is no
surprise that, correspondingly, the position of the SR
peaks in Fig. 3 appear to shift to lower Q , values. Final-
ly, on further increasing Q,,, the condition is reached
that X; becomes a monotonic decreasing function of Q ,
[19].
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